IJCRT.ORG

ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Hardy spaces on the disk and its applications

Praveen Sharma P.G. Student Department of Mathematics University of Delhi, Delhi, India

Abstract

In this paper , we discuss the Hardy Hilbert Space on the open disk with center origin and radius unity. We have proved that H^2 Space is isomorphic to proper subspace of L^2 Space which has various applications in Quantumm Mechanics.

Keywords : Lebesgue , Parseval Identity , Separable , orthonormal

1 Preliminaries

3. *< u, u >*

1.0.1 Definition (Inner Product Space)

≥ 0

An *inner product space* is a vector space W (over field K = R or C) with an inner product defined on it. Here, an inner product is an function <,>: $W \times W \rightarrow K$ which satisfies the following properties:-

 $\alpha < u, w > + < v, w >$

$$1. < \alpha u + v, w > =$$

 $2. < u, v > =$

< v, u >

4. $\langle u, u \rangle = 0$ $\Leftrightarrow u = 0$ (for all scalers $\alpha \in K$ and for all vectors $u, v, w \in W$) Note1 Every inner product space is a normed spaces with the norm induced by the inner product is given by

$$\sqrt{||u||} = \langle u, u \rangle$$

Note2 An normed space (*W*,||.||) is said to be complete if each cauchy sequence converges in *W*.

1.1 Hilbert Space

An Hilbert Space is defined as the complete inner product space. **Example:**-

$$l^{2} = \{(x_{0}, x_{1}, \ldots) : x_{n} \in \mathbb{C}, \sum_{n=0}^{\infty} |x_{n}|^{2} < \infty\}$$

i.e. all the elements of l^2 are the sequence of all the complex numbers that are square-summable. Inner product on l^2 is given by :-

 $<(x_n)_{n=0}^{\infty},(y_n)_{n=0}^{\infty}>=\sum_{n=0}^{\infty}x_n\overline{y_n}$ (it is an Hilbert sequence space)

1.2 Definition (Orthonormal sets and sequences)

An subset *X* of an inner product space is said to be orthonormal if for all $u, v \in X$ we have ,

$$\langle u, v \rangle = \begin{cases} 0 & \text{if } u \neq v \\ ||u||^2 & \text{if } u = v \end{cases}$$

Note If norm of each element of an orthogonal set *X* is 1 then the set is said to be orthogonal. i.e for all $u, v \in X$ we have,

$$\langle u, v \rangle = \begin{cases} 0 & \text{if } u \neq v \\ 1 & \text{if } u = v \end{cases}$$

1.3 Definition (Orthonormal basis)

An orthonormal subset *X* of Hilbert space *W* is said to be an orthonormal basis if span of *X* is dense in *W*. i.e.

Span X = W

NoteEvery Hilbert space *W* not equals to {0} has an orthonormal basis.

1.4 Definition (Separable Hilbert Space)

A Hilbert-Space *W* is said to be *separable* if there exist a countable set which is dense in *W*.

Example: *l*² is a separable Hilbert space

Note Each orthonormal basis of an separable Hilbert space are countable. Therefore orthonormal basis of *l*² are countable **Recall**

 \Leftrightarrow

1. An orthonormal sequence $\binom{e_n}{n=0}^{\infty}$ is an orthonormal basis of a Hilbert - Space W

for all $u \in W$ we have	$\sum_{n=0}^{\infty} \langle u, e_n \rangle ^2 = u ^2$ [2] Parseval identity
Let (<i>e_n</i>) be an orthonormal sequ	ience in a Hilbert-space then
	αnen n=0
converges in <i>W iff</i>	
the series	
	∞
	$X \alpha_n _2$
	<i>n</i> =0

converges in R

2.

2 THE HARDY-HILBERT SPACE

2.1 **DEFINITION**

It is defined as the space of all the analytic functions which have a power series representation about origin with squaresummable complex coefficients. It is denoted by H^2 .

$$H^{2} = \{f : f(z) = \sum_{n=0}^{\infty} \alpha_{n} z^{n} : \sum_{n=0}^{\infty} |\alpha_{n}|^{2} < \infty\}$$

Inner Product on *H*² is given by

$$\langle f,g \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$$

 $for f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ in H^2

Theorem 2.1. The Hardy-Hilbert space is a separable Hilbert Space.

Proof. Define an function;-

$$\Phi : l^2 \rightarrow H^2$$

given by

$(a_n)_{\infty n=0} \rightarrow Xa_n z_n$

 ∞

- φ is well defined since $(a_n)_{n=0}^{\infty} \in l^2 \Rightarrow \sum_{n=0}^{\infty} |a_n|^2 < \infty \Rightarrow \sum_{n=0}^{\infty} a_n z^n$ which being an power series is an analytic function whose coefficients are square summable hence is in $H^2 \therefore \varphi$ is well defined
- Clearly φ is linear
- φ is isometric

Fix $(a_n)_{n=0}^{\infty} \in l^2$ then we have

$$\phi((a_n)_{n=0}^{\infty}) = \frac{||\sum_{n=0}^{\infty} a_n z^n||_{H^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0}^{\infty} |a_n|^2}}} = \frac{||(a_n)_{n=0}^{\infty}||_{l^2}}{\sqrt{\sum_{n=0$$

 $\therefore \varphi$ is an isometric

 $\therefore \varphi$ preserves the norm so that the inner product

- since isometry property implies one one property $\therefore \varphi$ is one one [1]
- φ is onto

Let
$$f \in H^2$$
 then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ where $\sum_{n=0}^{\infty} |a_n|^2 < \infty$

define $x = (a_0, a_1, ...)$ **Since**

$$||x||^{2} = X|a_{n}|^{2} < \infty$$

$$n=0$$

$$\therefore x \in l^{2}$$

and

 $\varphi(x) = f$

$$\therefore \varphi$$
 is onto

Therefore φ is an vector space isomorphism which also preserves the inner product. Since l^2 is an separable Hilbert space hence H^2 is also an separable Hilbert Space

Notations D = {z : |z| < 1} denotes the open unit disk about origin in C S¹ = {z : |z| = 1} denotes the unit circle about origin in C

Theorem 2.2. Radius of convergence of each function in H^2 is atleast 1 (i.e. each function in H^2 is analytic in the open unit disk D)

Proof. Let $z_0 \in D$ is fixed $\Rightarrow |z_0| < 1$: the geometric series $\sum_{n=0}^{\infty} |z_0|^n$ converges. Let $f \in H^2$ is arbitrary. Then

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad \qquad \sum_{n=0}^{\infty} |a_n|^2 < \infty$$
where

Since the series $\sum_{n=0}^{\infty} |a_n|^2$ converges $\Rightarrow |a_n|^2 \rightarrow 0 \Rightarrow |a_n| \rightarrow 0$ $\therefore (|a_n|)_{n=0}^{\infty}$ is an convergent sequence hence bounded. $\therefore \exists M > 0$ such that

$$|a_n| \le M \qquad \forall \qquad n \ge 0$$

Now

$$\sum_{n=0}^{\infty} |a_n z_0^n| \le M \sum_{n=0}^{\infty} |z_0|^n$$

where being an geometric series right hand side converges.

: By Comparison test the series $\sum_{n=0}^{\infty} a_n z_0^n$ converges absolutely. Since in Hilbert space absolute convergence implies convergence.

: the series $\sum_{n=0}^{\infty} a_n z_0^n$ converges in H^2 since $z_0 \in H^2$ is arbitrary : each function in H^2 is analytic in the unit disk D

2.2 Definition ($L^2(S^1)$ **space)**

It is defined as the space of all the equivalence classes of functions [4] that are Lebesgue measurable on S^1 and square integrable on S^1 with respect to Lebesgue measure normalized such that measure of S_1 is 1.

$$L^{2}(S^{\mathbb{H}}) = \{f : f \text{ is Lesbesgue measurable on } S^{\mathbb{H}} \text{ and } \frac{1}{2\pi} \}$$

Inner product on $L^2(S^1)$ is given by

$$< f,g> = rac{1}{2\pi} \int_{0}^{2\pi} f(e^{\iota\theta}) \overline{g(e^{\iota\theta})} d\theta$$

Note $L^2(S^1)$ is an Hilbert-space with the orthonormal basis given by $\{e_n : n \in Z\}$ where $e_n(e^{i\theta}) = e^{in\theta}$. **Therefore**

$$L^2(\mathbb{S}^{\mathbb{P}}) = \left\{ f : f = \sum_{n = -\infty}^{n = \infty} \langle f, e_n \rangle e_n \right\}_{\dots[3]}$$

2.2.1 Definition (H_{C^2} space)

 H_{C^2} is an subspace of $L^2(S^1)$ whose negative Fourier coefficients are 0

:: $\{e_n: n = 0, 1, ...\}$ are orthonormal basis of $\widehat{H^2}$ Theorem 2.3. $H_{\mathbb{C}^2}$ is an Hilbert-space

 Proof. Let $f \in H_{\mathbb{C}^2}$ then there exist an sequence $(f_n)_{n=0}^{\infty}$

 such that
 $f_n \rightarrow f$ as $n \rightarrow \infty$

 Since
 $f_n \in H_{\mathbb{C}^2}$ $\forall n \ge 0$
 \therefore $< f_{n_r}e_k >= 0$ $\forall n \ge 0$ $\forall k < 0$

 Now for each k < 0 we have

Now for each x < 0 we have

 $| < f_n, e_k > - < f, e_k > | \le | < (f_n - f, e_k > | \le ||f_n - f|| \rightarrow 0 \text{ as } n \rightarrow \infty (\text{Schwarz Inequality} [2])$ since $< f_n, e_k >= 0 \quad \forall n \ge 0 \quad \Rightarrow \quad < f, e_k >= 0$ Since k < 0 is arbitrary $\therefore \quad < f, e_k >= 0 \quad \forall k < 0$ $\therefore \quad f \in H_{\mathbb{C}^2}$

Therefore H_{C^2} is an closed subspace of $L^2(S^1)$ Hence an Hilbert-Space

Theorem 2.4. The Hardy-Hilbert space can be identified as a subspace of $L^2(S^1)$

Proof. Define an function $\psi: H^2 \to \widehat{H^2}$ $\tilde{f} = \sum_{n=0}^{\infty} a_n e^{i\theta}$ where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and • ψ is well defined $\sum_{n=0}^{\infty} |a_n|^2$ $f(z) = \sum_{n=0}^{\infty} a_n z^n$ Then Let $f \in H^2$ where Then by (recall 2) the series $\vec{f} = \sum_{n=0}^{\infty} a_n e_n$ converges in H^2 well defined **∴**ψ is • Clearly ψ is linear

• ψ is an isometry

For any arbitrary $f \in H^2$ where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ we have: $||\psi(f)|| = ||\tilde{f}|| = \frac{1}{2\pi} \int_0^{2\pi} |\tilde{f}(e^{i\theta})|^2 d\theta$

$$\frac{1}{2\pi} \int_0^{2\pi} |\tilde{f}(e^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} (\sum_{n=0}^\infty a_n e^{in\theta}) (\overline{\sum_{m=0}^\infty a_m e^{im\theta}})$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_n \overline{a_m} e^{\iota(n-m)\theta} d\theta$$
$$= \sum_{n=0}^{\infty} |a_n|^2 \qquad (\text{since } \frac{1}{2\pi} \int_0^{2\pi} e^{\iota(n-m)\theta} = \delta_{nm})$$
$$= ||f||^2$$

Since $f \in H^2$ is arbitrary

 $\therefore ||\psi(f)|| \qquad = \qquad ||f|| \qquad \forall \quad f \in H^2$

Therefore ψ is an isometry. Hence it preserves the inner product Isometry \Rightarrow one one property. $\therefore \psi$ is one one.

• ψ is Onto

Let
$$\tilde{f} \in \hat{H}^2$$
. Then $\tilde{f} = \sum_{n=0}^{\infty} \langle f, e_n \rangle \langle e_n \rangle$

where $\langle f, e_1 \rangle, \langle f, e_2 \rangle, ...$ are Fourier coefficients of f with respect to the orthonormal basis $\{e_n : n \in N\}$. Then by Parseval relation we have

EVALUATE: That is ψ is a vector space isomorphism which also preserves the norm. Therefore H^2 can be identified as a subspace of the $L^2(S^1)$ space

3 Applications

 In the mathematical rigrous formulation of Quantum Mechanics, developed by Joh Von Neumann' the position and momentum states for a single non relavistic spin 0 Particle is the space of all the square integrable functions(*L*²). But *L*² have some undesirable properties and *H*² is much well behaved space so we work with *H*² instead of *L*².

References

- [1] Rajendra Bhatia. *Notes on functional analysis*, volume 50. Springer, 2009.
- [2] Erwin Kreyszig. Introductory functional analysis with applications, volume 1. wiley New York, 1978.
- [3] Rub'en A Mart'inez-Avendan^o and Peter Rosenthal. *An introduction to operators on the HardyHilbert space*, volume 237. Springer Science & Business Media, 2007.
- [4] Halsey Lawrence Royden et al. *Real analysis*. Prentice Hall, 2010.

